\qquad

Calculus I

Professor Piotr Hajłasz
First Exam
October 3, 2014, 11:00-11:50am.

Problem	Possible points	Score
1	20	
2	30	
3	20	
4	10	
5	20	
Total	100	

Exercise 1. (20p) Find the following limits
(a)

$$
\lim _{x \rightarrow 5} \frac{(x-5) \sin \left(\frac{\pi x}{20}\right)}{\sqrt{x+4}-3}
$$

(b)

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{2 x^{4}+1}+\sin (2 x)}{x^{2}+25 x+2014} .
$$

Exercise 2. (30p)
(a) For what value of a is the function continuous

$$
f(x)=\left\{\begin{array}{cl}
\frac{6 x^{2}}{\sin \left(x^{2}\right)} & \text { if } x>0 \\
\left(a^{2}+1\right) \sin x+3 a & \text { if } x \leq 0
\end{array}\right.
$$

(b) Use the definition to find the derivative of $f(x)=\sqrt{3 x+5}$.
(c) Find vertical and horizontal asymptotes of $f(x)=\frac{(x-2) \sin \left(x^{2}+1\right)}{x^{3}-5 x^{2}+6 x}$.

Exercise 3.(20p) Find the derivative of
(a)

$$
\cos \left(\sqrt{x+\sin \left(\frac{1}{\sqrt{x+1}}\right)}\right)
$$

(b)

$$
\frac{\cos ^{2} x-x}{2+\tan x}
$$

Exercise 4.(10p) Find $d y / d x$ if $y^{2}=x^{2}+\sin (x y)$.

Exercise 5. (20p) A girl files a kite at a height of 300 ft , the wind carrying the kite horizontally away from her at a rate of $25 \mathrm{ft} / \mathrm{sec}$. How fast must she let out the string when the kite is 500 ft away from her?

